

Feb 19-8:47 AM

12 randomly selected students from ELAC
had a mean age of 28.5 Yrs with standard deviation of 7.5 Yrs. ELAC $n=12 \quad \bar{x}=28.5 \quad S=7.5$

15 randomly Selected students from UCLA
had a mean age of 36.2 yrs with standard deviation of 10.5 Yrs. UCLA $n=15 \quad \bar{x}=36.2 \quad S=10,5$

Use $\alpha=.02$ to test the claim that there is a difference between two pop. Standard deviations. $\sigma_{1} \neq \sigma_{2}$

Reject the claim

Dec 13-7:36 AM

Dec 13-8:15 AM

Dec 13-8:52 AM

1) Find $\operatorname{CTS} t \quad t=r \cdot \sqrt{\frac{n-2}{1-r^{2}}}$

$$
\begin{aligned}
& =.6 \cdot \sqrt{\frac{10-2}{1-.6^{2}}} \\
& =.6 \cdot \sqrt{\frac{8}{.64}}=2.121
\end{aligned}
$$

2) find P-value for TIT

p-value $>\alpha \quad H_{0}$ valid \rightarrow Linear Correlation .067 .02 H Invalid is not Significant
If we choose $\alpha=.07, .08, .09, .1, \ldots$
P-value $\leq \alpha \rightarrow H_{0}$ invalid
HI valid \rightarrow Linear Correlation
is significant.
\qquad
\qquad

Dec 13-9:08 AM

How to make Predictions:

$$
\begin{aligned}
\text { If } r \text { is significant } \\
H_{1} \text { is valid }
\end{aligned} \underset{\text { Plug in } x \text { regression line }}{ } \quad \text { find } y
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\frac{\text { If } r \text { is not Significant }}{H_{0} \text { is valid }} \Rightarrow \text { Use } \bar{y}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dec 13-9:19 AM

